Saturday, February 2, 2008

Thermionic diodes are thermionic valve devices

Although the crystal diode was popularized before the thermionic diode, thermionic and solid state diodes developed in parallel. The principle of operation of thermionic diodes was discovered by Frederick Guthrie in 1873.[1] The principle of operation of crystal diodes was discovered in 1874 by the German scientist, Karl Ferdinand Braun.[2]

Thermionic diode principles were rediscovered by Thomas Edison on February 13, 1880 and he was awarded a patent in 1883 (U.S. Patent 307,031 ), but developed the idea no further. Braun patented the crystal rectifier in 1899 [1]. Braun’s discovery was further developed by Jagdish Chandra Bose into a useful device for radio detection.

The first radio receiver using a crystal diode was built around 1900 by Greenleaf Whittier Pickard. The first thermionic diode was patented in Britain by John Ambrose Fleming (scientific adviser to the Marconi Company and former Edison employee[2]) on November 16, 1904 (U.S. Patent 803,684 in November 1905). Pickard received a patent for a silicon crystal detector on November 20, 1906 [3] (U.S. Patent 836,531 ).

At the time of their invention, such devices were known as rectifiers. In 1919 William Henry Eccles coined the term diode from Greek roots; di means ‘two’, and ode (from odos) means ‘path’.

[edit] Thermionic & gaseous state diodes

Figure 4: The symbol for an indirect heated vacuum tube diode. From top to bottom, the components are the anode, the cathode, and the heater filament.
Figure 4: The symbol for an indirect heated vacuum tube diode. From top to bottom, the components are the anode, the cathode, and the heater filament.

Thermionic diodes are thermionic valve devices (also known as vacuum tubes), which are arrangements of electrodes surrounded by a vacuum within a glass envelope. Early examples were fairly similar in appearance to incandescent light bulbs.

In thermionic valve diodes, a current is passed through the heater filament. This indirectly heats the cathode, another filament treated with a mixture of barium and strontium oxides, which are oxides of alkaline earth metals; these substances are chosen because they have a small work function. (Some valves use direct heating, in which a tungsten filament acts as both cathode and emitter.) The heat causes thermionic emission of electrons into the vacuum. In forward operation, a surrounding metal electrode, called the anode, is positively charged, so that it electrostatically attracts the emitted electrons. However, electrons are not easily released from the unheated anode surface when the voltage polarity is reversed and hence any reverse flow is a very tiny current.

For much of the 20th century, thermionic valve diodes were used in analog signal applications, and as rectifiers in many power supplies. Today, valve diodes are only used in niche applications, such as rectifiers in guitar and hi-fi valve amplifiers, and specialized high-voltage equipment.

[edit] Semiconductor diodes

Most modern diodes are based on semiconductor p-n junctions. In a p-n diode, conventional current can flow from the p-type side (the anode) to the n-type side (the cathode), but cannot flow in the opposite direction. Another type of semiconductor diode, the Schottky diode, is formed from the contact between a metal and a semiconductor rather than by a p-n junction.

[edit] Voltage-Current characteristics

A semiconductor diode’s voltage-current, or V-I, characteristic curve is related to the transport of carriers through the so-called depletion layer or depletion region that exists at the p-n junction between differing semiconductors. When a p-n junction is first created, conduction band (mobile) electrons from the N-doped region diffuse into the P-doped region where there is a large population of holes (places for electrons in which no electron is present) with which the electrons “recombine”. When a mobile electron recombines with a hole, both hole and electron vanish, leaving behind an immobile positively charged donor on the N-side and negatively charged acceptor on the P-side. The region around the p-n junction becomes depleted of charge carriers and thus behaves as an insulator.

However, the depletion width cannot grow without limit. For each electron-hole pair that recombines, a positively-charged dopant ion is left behind in the N-doped region, and a negatively charged dopant ion is left behind in the P-doped region. As recombination proceeds and more ions are created, an increasing electric field develops through the depletion zone which acts to slow and then finally stop recombination. At this point, there is a “built-in” potential across the depletion zone.

If an external voltage is placed across the diode with the same polarity as the built-in potential, the depletion zone continues to act as an insulator preventing a significant electric current. This is the reverse bias phenomenon. However, if the polarity of the external voltage opposes the built-in potential, recombination can once again proceed resulting in substantial electric current through the p-n junction. For silicon diodes, the built-in potential is approximately 0.6 V. Thus, if an external current is passed through the diode, about 0.6 V will be developed across the diode such that the P-doped region is positive with respect to the N-doped region and the diode is said to be “turned on” as it has a forward bias.

Figure 5: I–V characteristics of a P-N junction diode (not to scale).
Figure 5: I–V characteristics of a P-N junction diode (not to scale).

A diode’s I–V characteristic can be approximated by four regions of operation (see the figure at right).

At very large reverse bias, beyond the peak inverse voltage or PIV, a process called reverse breakdown occurs which causes a large increase in current that usually damages the device permanently. The avalanche diode is deliberately designed for use in the avalanche region. In the Zener diode, the concept of PIV is not applicable. A Zener diode contains a heavily doped p-n junction allowing electrons to tunnel from the valence band of the p-type material to the conduction band of the n-type material, such that the reverse voltage is “clamped” to a known value (called the Zener voltage), and avalanche does not occur. Both devices, however, do have a limit to the maximum current and power in the clamped reverse voltage region.

The second region, at reverse biases more positive than the PIV, only a very small reverse saturation current flows. In the reverse bias region for a normal P-N rectifier diode, the current through the device is very low (in the µA range).

The third region is forward but small bias, where only a small forward current is conducted.

As the potential difference is increased above an arbitrarily defined cut-in voltage or on-voltage, the diode current becomes appreciable (the level of current considered “appreciable” and the value of cut-in voltage depends on the application), and the diode presents a very low resistance.

The current–voltage curve is exponential. In a normal silicon diode at rated currents, the arbitrary 'cut-in' voltage is defined as 0.6 to 0.7 volts. The value is different for other diode types — Schottky diodes can be as low as 0.2 V and red light-emitting diodes (LEDs) can be 1.4 V or more and blue LEDs can be up to 4.0 V.

At higher currents the forward voltage drop of the diode increases. A drop of 1v to 1.5v is typical at full rated current for power diodes.

[edit] Shockley diode equation

The Shockley ideal diode equation or the diode law (named after transistor co-inventor William Bradford Shockley, not to be confused with tetrode inventor Walter H. Schottky) is the I–V characteristic of an ideal diode in either forward or reverse bias (or no bias). The equation is:

I=I_\mathrm{S} \left( e^{V_\mathrm{D}/(n V_\mathrm{T})}-1 \right),\,

where

I is the diode current,
IS is a scale factor called the saturation current,
VD is the voltage across the diode,
VT is the thermal voltage,
and n is the emission coefficient, also known as the ideality factor. The emission coefficient n varies from about 1 to 2 depending on the fabrication process and semiconductor material and in many cases is assumed to be approximately equal to 1 (thus the notation n is omitted).

The thermal voltage VT is approximately 25.85 mV at 300 K, a temperature close to “room temperature” commonly used in device simulation software. At any temperature it is a known constant defined by:

V_\mathrm{T} = \frac{k T}{q},

where

q is the magnitude of charge on an electron (the elementary charge),
k is Boltzmann’s constant,
T is the absolute temperature of the p-n junction in kelvins

The Shockley ideal diode equation or the diode law is derived with the assumption that the only processes giving rise to current in the diode are drift (due to electrical field), diffusion, and thermal recombination-generation. It also assumes that the recombination-generation (R-G) current in the depletion region is insignificant. This means that the Shockley equation doesn’t account for the processes involved in reverse breakdown and photon-assisted R-G. Additionally, it doesn’t describe the “leveling off” of the I–V curve at high forward bias due to internal resistance.

Under reverse bias voltages (see Figure 5) the exponential in the diode equation is negligible, and the current is a constant (negative) reverse current value of -IS. The reverse breakdown region is not modeled by the Shockley diode equation.

For even rather small forward bias voltages (see Figure 5) the exponential is very large because the thermal voltage is very small, so the subtracted ‘1’ in the diode equation is negligible and the forward diode current is often approximated as

I=I_\mathrm{S}  e^{V_\mathrm{D}/(n V_\mathrm{T})}

The use of the diode equation in circuit problems is illustrated in the article on diode modeling.

[edit] Hydrodynamic analogy

Main article: Hydraulic analogy

The diode, in the manner of a valve, allows the passage of the current only in one direction. It is a polarized dipole, the anode and cathode is thus located on the component.


Figure 6(a) The valve is closed, the current is blocked

Figure 6(b)The valve is opened, the current passes


[edit] Small-signal behavior

For circuit design, a small-signal model of the diode behavior often proves useful. A specific example of diode modeling is discussed in the article on small-signal circuits.

[edit] Types of semiconductor diode

There are several types of junction diodes, which either emphasizes a different physical aspects of a diode often by geometric scaling, doping level, choosing the right electrodes, are just an application of a diode in a special circuit, or are really different devices like the Gunn and laser diode and the JFET:

Normal (p-n) diodes which operate as described above. Usually made of doped silicon or, more rarely, germanium. Before the development of modern silicon power rectifier diodes, cuprous oxide and later selenium was used; its low efficiency gave it a much higher forward voltage drop (typically 1.4–1.7 V per “cell”, with multiple cells stacked to increase the peak inverse voltage rating in high voltage rectifiers), and required a large heat sink (often an extension of the diode’s metal substrate), much larger than a silicon diode of the same current ratings would require. The vast majority of all diodes are the p-n diodes found in CMOS integrated circuits, which include 2 diodes per pin and many other internal diodes.

Avalanche diodes

Diodes that conduct in the reverse direction when the reverse bias voltage exceeds the breakdown voltage. These are electrically very similar to Zener diodes, and are often mistakenly called Zener diodes, but break down by a different mechanism, the avalanche effect. This occurs when the reverse electric field across the p-n junction causes a wave of ionization, reminiscent of an avalanche, leading to a large current. Avalanche diodes are designed to break down at a well-defined reverse voltage without being destroyed. The difference between the avalanche diode (which has a reverse breakdown above about 6.2 V) and the Zener is that the channel length of the former exceeds the “mean free path” of the electrons, so there are collisions between them on the way out. The only practical difference is that the two types have temperature coefficients of opposite polarities.

Cat’s whisker or crystal diodes

These are a type of point contact diode. The cat’s whisker diode consists of a thin or sharpened metal wire pressed against a semiconducting crystal, typically galena or a piece of coal.[4] The wire forms the anode and the crystal forms the cathode. Cat’s whisker diodes were also called crystal diodes and found application in crystal radio receivers. Cat’s whisker diodes are obsolete.

Constant current diodes

These are actually a JFET with the gate shorted to the source, and function like a two-terminal current-limiting analog to the Zener diode; they allow a current through them to rise to a certain value, and then level off at a specific value. Also called CLDs, constant-current diodes, diode-connected transistors, or current-regulating diodes.[5], [6]

Esaki or tunnel diodes

these have a region of operation showing negative resistance caused by quantum tunneling, thus allowing amplification of signals and very simple bistable circuits. These diodes are also the type most resistant to nuclear radiation.

Gunn diodes

These are similar to tunnel diodes in that they are made of materials such as GaAs or InP that exhibit a region of negative differential resistance. With appropriate biasing, dipole domains form and travel across the diode, allowing high frequency microwave oscillators to be built.

Light-emitting diodes (LEDs)

In a diode formed from a direct band-gap semiconductor, such as gallium arsenide, carriers that cross the junction emit photons when they recombine with the majority carrier on the other side. Depending on the material, wavelengths (or colors) from the infrared to the near ultraviolet may be produced. The forward potential of these diodes depends on the wavelength of the emitted photons: 1.2 V corresponds to red, 2.4 to violet. The first LEDs were red and yellow, and higher-frequency diodes have been developed over time. All LEDs are monochromatic; “white” LEDs are actually combinations of three LEDs of a different color, or a blue LED with a yellow scintillator coating. LEDs can also be used as low-efficiency photodiodes in signal applications. An LED may be paired with a photodiode or phototransistor in the same package, to form an opto-isolator.

Laser diodes

When an LED-like structure is contained in a resonant cavity formed by polishing the parallel end faces, a laser can be formed. Laser diodes are commonly used in optical storage devices and for high speed optical communication.

Peltier diodes

are used as sensors, heat engines for thermoelectric cooling. Charge carriers absorb and emit their band gap energies as heat.

Photodiodes

All semiconductors are subject to optical charge carrier generation. This is typically an undesired effect, so most semiconductors are packaged in light blocking material. Photodiodes are intended to sense light(photodetector), so they are packaged in materials that allow light to pass, and are usually PIN (the kind of diode most sensitive to light). A photodiode can be used in solar cells, in photometry, or in optical communications. Multiple photodiodes may be packaged in a single device, either as a linear array or as a two dimensional array. These arrays should not be confused with charge-coupled devices.

Point-contact diodes

These work the same as the junction semiconductor diodes described above, but their construction is simpler. A block of n-type semiconductor is built, and a conducting sharp-point contact made with some group-3 metal is placed in contact with the semiconductor. Some metal migrates into the semiconductor to make a small region of p-type semiconductor near the contact. The long-popular 1N34 germanium version is still used in radio receivers as a detector and occasionally in specialized analog electronics.

PIN diodes

A PIN diode has a central un-doped, or intrinsic, layer, forming a p-type / intrinsic / n-type structure. They are used as radio frequency switches and attenuators. They are also used as large volume ionizing radiation detectors and as photodetectors. PIN diodes are also used in power electronics, as their central layer can withstand high voltages. Furthermore, the PIN structure can be found in many power semiconductor devices, such as IGBTs, power MOSFETs, and thyristors.

Switching diodes

Switching diodes, sometimes also called small signal diodes, are a single p-n diode in a discrete package. A switching diode provides essentially the same function as a switch. Below the specified applied voltage it has high resistance similar to an open switch, while above that voltage it suddenly changes to the low resistance of a closed switch. They are used in devices such as ring modulation.

Schottky diodes

Schottky diodes are constructed from a metal to semiconductor contact. They have a lower forward voltage drop than any p-n junction diode. Their forward voltage drop at forward currents of about 1 mA is in the range 0.15 V to 0.45 V, which makes them useful in voltage clamping applications and prevention of transistor saturation. They can also be used as low loss rectifiers although their reverse leakage current is generally much higher than non Schottky rectifiers. Schottky diodes are majority carrier devices and so do not suffer from minority carrier storage problems that slow down most normal diodes — so they have a faster “reverse recovery” than any p-n junction diode. They also tend to have much lower junction capacitance than PN diodes and this contributes towards their high switching speed and their suitability in high speed circuits and RF devices such as switched-mode power supply, mixers and detectors.

Super Barrier Diodes

Super barrier diodes are rectifier diodes that incorporate the low forward voltage drop of the Schottky diode with the surge-handling capability and low reverse leakage current of a normal p-n junction diode.

Gold-doped” diodes

As a dopant, gold (or platinum) acts as recombination centers, which help a fast recombination of minority carriers. This allows the diode to operate at signal frequencies, at the expense of a higher forward voltage drop. Gold doped diodes are faster than other p-n diodes (but not as fast as Schottky diodes). They also have less reverse-current leakage than Schottky diodes (but not as good as other p-n diodes).[7].[3] A typical example is the 1N914.

Snap-off or Step recovery diodes

The term ‘step recovery’ relates to the form of the reverse recovery characteristic of these devices. After a forward current has been passing in an SRD and the current is interrupted or reversed, the reverse conduction will cease very abruptly (as in a step waveform). SRDs can therefore provide very fast voltage transitions by the very sudden disappearance of the charge carriers.

Transient voltage suppression diode (TVS)

These are avalanche diodes designed specifically to protect other semiconductor devices from high-voltage transients. Their p-n junctions have a much larger cross-sectional area than those of a normal diode, allowing them to conduct large currents to ground without sustaining damage.

Varicap or varactor diodes

These are used as voltage-controlled capacitors. These are important in PLL (phase-locked loop) and FLL (frequency-locked loop) circuits, allowing tuning circuits, such as those in television receivers, to lock quickly, replacing older designs that took a long time to warm up and lock. A PLL is faster than a FLL, but prone to integer harmonic locking (if one attempts to lock to a broadband signal). They also enabled tunable oscillators in early discrete tuning of radios, where a cheap and stable, but fixed-frequency, crystal oscillator provided the reference frequency for a voltage-controlled oscillator.

Zener diodes

Diodes that can be made to conduct backwards. This effect, called Zener breakdown, occurs at a precisely defined voltage, allowing the diode to be used as a precision voltage reference. In practical voltage reference circuits Zener and switching diodes are connected in series and opposite directions to balance the temperature coefficient to near zero. Some devices labeled as high-voltage Zener diodes are actually avalanche diodes (see below). Two (equivalent) Zeners in series and in reverse order, in the same package, constitute a transient absorber (or Transorb, a registered trademark). They are named for Dr. Clarence Melvin Zener of Southern Illinois University, inventor of the device.


Other uses for semiconductor diodes include sensing temperature, and computing analog logarithms (see Operational amplifier applications#Logarithmic).

[edit] Numbering

A standardized 1N-series numbering system was introduced in the US by EIA/JEDEC (Joint Electron Device Engineering Council) about 1960. Among the most popular in this series were: 1N34A/1N270 (Germanium signal), IN914/1N4148 (Silicon signal) and 1N4001-1N4007 (Silicon 1A power rectifier). [8] [9] [10]

[edit] Related devices

In optics, an equivalent device for the diode but with laser light would be the Optical isolator, also known as an Optical Diode, that allows light to only pass in 1 direction. It uses a Faraday rotator as the main component.

[edit] Applications

Figure 8: Several types of diodes. The scale is centimeters.
Figure 8: Several types of diodes. The scale is centimeters.

[edit] Radio demodulation

The first use for the diode was the demodulation of amplitude modulated (AM) radio broadcasts. The history of this discovery is treated in depth in the radio article. In summary, an AM signal consists of alternating positive and negative peaks of voltage, whose amplitude or “envelope” is proportional to the original audio signal, but whose average value is zero. The diode (originally a crystal diode) rectifies the AM signal, leaving a signal whose average amplitude is the desired audio signal. The average value is extracted using a simple filter and fed into an audio transducer, which generates sound.

[edit] Power conversion

Rectifiers are constructed from diodes, where they are used to convert alternating current (AC) electricity into direct current (DC). Automotive alternators are a common example, where the diode provides better performance than the commutator of earlier dynamo. Similarly, diodes are also used in Cockcroft–Walton voltage multipliers to convert AC into higher DC voltages.

[edit] Over-voltage protection

Diodes are frequently used to conduct damaging high voltages away from sensitive electronic devices. They are usually reverse-biased (non-conducting) under normal circumstances. When the voltage rises above the normal range, the diodes become forward-biased (conducting). For example, diodes are used in ( stepper motor and H-bridge ) motor controller and relay circuits to de-energize coils rapidly without the damaging voltage spikes that would otherwise occur. (Any diode used in such an application is called a flyback diode). Many integrated circuits also incorporate diodes on the connection pins to prevent external voltages from damaging their sensitive transistors. Specialized diodes are used to protect from over-voltages at higher power (see Diode types above).

[edit] Logic gates

Diodes can be combined with other components to construct AND and OR logic gates. This is referred to as diode logic.

[edit] Ionising radiation detectors

In addition to light, mentioned above, semiconductor diodes are sensitive to more energetic radiation. In electronics, cosmic rays and other sources of ionising radiation cause noise pulses and single and multiple bit errors. This effect is sometimes exploited by particle detectors to detect radiation. A single particle of radiation, with thousands or millions of electron volts of energy, generates many charge carrier pairs, as its energy is deposited in the semiconductor material. If the depletion layer is large enough to catch the whole shower or to stop a heavy particle, a fairly accurate measurement of the particle’s energy can be made, simply by measuring the charge conducted and without the complexity of a magnetic spectrometer or etc. These semiconductor radiation detectors need efficient and uniform charge collection and low leakage current. They are often cooled by liquid nitrogen. For longer range (about a centimetre) particles they need a very large depletion depth and large area. For short range particles, they need any contact or un-depleted semiconductor on at least one surface to be very thin. The back-bias voltages are near breakdown (around a thousand volts per centimetre). Germanium and silicon are common materials. Some of these detectors sense position as well as energy. They have a finite life, especially when detecting heavy particles, because of radiation damage. Silicon and germanium are quite different in their ability to convert gamma rays to electron showers.

Semiconductor detectors for high energy particles are used in large numbers. Because of energy loss fluctuations, accurate measurement of the energy deposited is of less use.

[edit] Temperature measuring

A diode can be used as a temperature measuring device, since the forward voltage drop across the diode depends on temperature, as in a Silicon bandgap temperature sensor. From the Shockley ideal diode equation given above, it appears the voltage has a positive temperature coefficient (at a constant current)but depends on doping concentration and operating temperature (Sze 2007). The temperature coefficient can be negative as in typical thermistors or positive for temperature sense diodes down to about 20 kelvins.

[edit] Current steering

Diodes will prevent currents from flowing in unintended directions. To supply power to an electrical circuit during a power failure, the circuit can draw current from a battery. An Uninterruptible power supply may use diodes in this way to ensure that current is only drawn from the battery when necessary. Similarly, small boats typically have two circuits each with their own battery/batteries: one used for engine starting; one used for domestics. Normally both are charged from a single alternator, and a heavy duty split charge diode is used to prevent the higher charge battery (typically the engine battery) from discharging through the lower charged battery when the alternator is not running [[11]].

[edit] Abbreviations

Diodes are usually referred to as D for diode on PCBs. Sometimes the abbreviation CR for crystal rectifier is seen.[4]

[edit] See also

[edit] Notes

  1. ^ 1928 Nobel Prize article on the diode
  2. ^ Historical lecture on Karl Braun
  3. ^ S. M. Sze, Modern Semiconductor Device Physics, Wiley Interscience, ISBN 0-471-15237-4
  4. ^ John Ambrose Fleming. (1919). The Principles of Electric Wave Telegraphy and Telephony. London: Longmans, Green. 550.

[edit] External links

Thermionic diodes are thermionic valve devices

Although the crystal diode was popularized before the thermionic diode, thermionic and solid state diodes developed in parallel. The principle of operation of thermionic diodes was discovered by Frederick Guthrie in 1873.[1] The principle of operation of crystal diodes was discovered in 1874 by the German scientist, Karl Ferdinand Braun.[2]

Thermionic diode principles were rediscovered by Thomas Edison on February 13, 1880 and he was awarded a patent in 1883 (U.S. Patent 307,031 ), but developed the idea no further. Braun patented the crystal rectifier in 1899 [1]. Braun’s discovery was further developed by Jagdish Chandra Bose into a useful device for radio detection.

The first radio receiver using a crystal diode was built around 1900 by Greenleaf Whittier Pickard. The first thermionic diode was patented in Britain by John Ambrose Fleming (scientific adviser to the Marconi Company and former Edison employee[2]) on November 16, 1904 (U.S. Patent 803,684 in November 1905). Pickard received a patent for a silicon crystal detector on November 20, 1906 [3] (U.S. Patent 836,531 ).

At the time of their invention, such devices were known as rectifiers. In 1919 William Henry Eccles coined the term diode from Greek roots; di means ‘two’, and ode (from odos) means ‘path’.

[edit] Thermionic & gaseous state diodes

Figure 4: The symbol for an indirect heated vacuum tube diode. From top to bottom, the components are the anode, the cathode, and the heater filament.
Figure 4: The symbol for an indirect heated vacuum tube diode. From top to bottom, the components are the anode, the cathode, and the heater filament.

Thermionic diodes are thermionic valve devices (also known as vacuum tubes), which are arrangements of electrodes surrounded by a vacuum within a glass envelope. Early examples were fairly similar in appearance to incandescent light bulbs.

In thermionic valve diodes, a current is passed through the heater filament. This indirectly heats the cathode, another filament treated with a mixture of barium and strontium oxides, which are oxides of alkaline earth metals; these substances are chosen because they have a small work function. (Some valves use direct heating, in which a tungsten filament acts as both cathode and emitter.) The heat causes thermionic emission of electrons into the vacuum. In forward operation, a surrounding metal electrode, called the anode, is positively charged, so that it electrostatically attracts the emitted electrons. However, electrons are not easily released from the unheated anode surface when the voltage polarity is reversed and hence any reverse flow is a very tiny current.

For much of the 20th century, thermionic valve diodes were used in analog signal applications, and as rectifiers in many power supplies. Today, valve diodes are only used in niche applications, such as rectifiers in guitar and hi-fi valve amplifiers, and specialized high-voltage equipment.

[edit] Semiconductor diodes

Most modern diodes are based on semiconductor p-n junctions. In a p-n diode, conventional current can flow from the p-type side (the anode) to the n-type side (the cathode), but cannot flow in the opposite direction. Another type of semiconductor diode, the Schottky diode, is formed from the contact between a metal and a semiconductor rather than by a p-n junction.

[edit] Voltage-Current characteristics

A semiconductor diode’s voltage-current, or V-I, characteristic curve is related to the transport of carriers through the so-called depletion layer or depletion region that exists at the p-n junction between differing semiconductors. When a p-n junction is first created, conduction band (mobile) electrons from the N-doped region diffuse into the P-doped region where there is a large population of holes (places for electrons in which no electron is present) with which the electrons “recombine”. When a mobile electron recombines with a hole, both hole and electron vanish, leaving behind an immobile positively charged donor on the N-side and negatively charged acceptor on the P-side. The region around the p-n junction becomes depleted of charge carriers and thus behaves as an insulator.

However, the depletion width cannot grow without limit. For each electron-hole pair that recombines, a positively-charged dopant ion is left behind in the N-doped region, and a negatively charged dopant ion is left behind in the P-doped region. As recombination proceeds and more ions are created, an increasing electric field develops through the depletion zone which acts to slow and then finally stop recombination. At this point, there is a “built-in” potential across the depletion zone.

If an external voltage is placed across the diode with the same polarity as the built-in potential, the depletion zone continues to act as an insulator preventing a significant electric current. This is the reverse bias phenomenon. However, if the polarity of the external voltage opposes the built-in potential, recombination can once again proceed resulting in substantial electric current through the p-n junction. For silicon diodes, the built-in potential is approximately 0.6 V. Thus, if an external current is passed through the diode, about 0.6 V will be developed across the diode such that the P-doped region is positive with respect to the N-doped region and the diode is said to be “turned on” as it has a forward bias.

Figure 5: I–V characteristics of a P-N junction diode (not to scale).
Figure 5: I–V characteristics of a P-N junction diode (not to scale).

A diode’s I–V characteristic can be approximated by four regions of operation (see the figure at right).

At very large reverse bias, beyond the peak inverse voltage or PIV, a process called reverse breakdown occurs which causes a large increase in current that usually damages the device permanently. The avalanche diode is deliberately designed for use in the avalanche region. In the Zener diode, the concept of PIV is not applicable. A Zener diode contains a heavily doped p-n junction allowing electrons to tunnel from the valence band of the p-type material to the conduction band of the n-type material, such that the reverse voltage is “clamped” to a known value (called the Zener voltage), and avalanche does not occur. Both devices, however, do have a limit to the maximum current and power in the clamped reverse voltage region.

The second region, at reverse biases more positive than the PIV, only a very small reverse saturation current flows. In the reverse bias region for a normal P-N rectifier diode, the current through the device is very low (in the µA range).

The third region is forward but small bias, where only a small forward current is conducted.

As the potential difference is increased above an arbitrarily defined cut-in voltage or on-voltage, the diode current becomes appreciable (the level of current considered “appreciable” and the value of cut-in voltage depends on the application), and the diode presents a very low resistance.

The current–voltage curve is exponential. In a normal silicon diode at rated currents, the arbitrary 'cut-in' voltage is defined as 0.6 to 0.7 volts. The value is different for other diode types — Schottky diodes can be as low as 0.2 V and red light-emitting diodes (LEDs) can be 1.4 V or more and blue LEDs can be up to 4.0 V.

At higher currents the forward voltage drop of the diode increases. A drop of 1v to 1.5v is typical at full rated current for power diodes.

[edit] Shockley diode equation

The Shockley ideal diode equation or the diode law (named after transistor co-inventor William Bradford Shockley, not to be confused with tetrode inventor Walter H. Schottky) is the I–V characteristic of an ideal diode in either forward or reverse bias (or no bias). The equation is:

I=I_\mathrm{S} \left( e^{V_\mathrm{D}/(n V_\mathrm{T})}-1 \right),\,

where

I is the diode current,
IS is a scale factor called the saturation current,
VD is the voltage across the diode,
VT is the thermal voltage,
and n is the emission coefficient, also known as the ideality factor. The emission coefficient n varies from about 1 to 2 depending on the fabrication process and semiconductor material and in many cases is assumed to be approximately equal to 1 (thus the notation n is omitted).

The thermal voltage VT is approximately 25.85 mV at 300 K, a temperature close to “room temperature” commonly used in device simulation software. At any temperature it is a known constant defined by:

V_\mathrm{T} = \frac{k T}{q},

where

q is the magnitude of charge on an electron (the elementary charge),
k is Boltzmann’s constant,
T is the absolute temperature of the p-n junction in kelvins

The Shockley ideal diode equation or the diode law is derived with the assumption that the only processes giving rise to current in the diode are drift (due to electrical field), diffusion, and thermal recombination-generation. It also assumes that the recombination-generation (R-G) current in the depletion region is insignificant. This means that the Shockley equation doesn’t account for the processes involved in reverse breakdown and photon-assisted R-G. Additionally, it doesn’t describe the “leveling off” of the I–V curve at high forward bias due to internal resistance.

Under reverse bias voltages (see Figure 5) the exponential in the diode equation is negligible, and the current is a constant (negative) reverse current value of -IS. The reverse breakdown region is not modeled by the Shockley diode equation.

For even rather small forward bias voltages (see Figure 5) the exponential is very large because the thermal voltage is very small, so the subtracted ‘1’ in the diode equation is negligible and the forward diode current is often approximated as

I=I_\mathrm{S}  e^{V_\mathrm{D}/(n V_\mathrm{T})}

The use of the diode equation in circuit problems is illustrated in the article on diode modeling.

[edit] Hydrodynamic analogy

Main article: Hydraulic analogy

The diode, in the manner of a valve, allows the passage of the current only in one direction. It is a polarized dipole, the anode and cathode is thus located on the component.


Figure 6(a) The valve is closed, the current is blocked

Figure 6(b)The valve is opened, the current passes


[edit] Small-signal behavior

For circuit design, a small-signal model of the diode behavior often proves useful. A specific example of diode modeling is discussed in the article on small-signal circuits.

[edit] Types of semiconductor diode

There are several types of junction diodes, which either emphasizes a different physical aspects of a diode often by geometric scaling, doping level, choosing the right electrodes, are just an application of a diode in a special circuit, or are really different devices like the Gunn and laser diode and the JFET:

Normal (p-n) diodes which operate as described above. Usually made of doped silicon or, more rarely, germanium. Before the development of modern silicon power rectifier diodes, cuprous oxide and later selenium was used; its low efficiency gave it a much higher forward voltage drop (typically 1.4–1.7 V per “cell”, with multiple cells stacked to increase the peak inverse voltage rating in high voltage rectifiers), and required a large heat sink (often an extension of the diode’s metal substrate), much larger than a silicon diode of the same current ratings would require. The vast majority of all diodes are the p-n diodes found in CMOS integrated circuits, which include 2 diodes per pin and many other internal diodes.

Avalanche diodes

Diodes that conduct in the reverse direction when the reverse bias voltage exceeds the breakdown voltage. These are electrically very similar to Zener diodes, and are often mistakenly called Zener diodes, but break down by a different mechanism, the avalanche effect. This occurs when the reverse electric field across the p-n junction causes a wave of ionization, reminiscent of an avalanche, leading to a large current. Avalanche diodes are designed to break down at a well-defined reverse voltage without being destroyed. The difference between the avalanche diode (which has a reverse breakdown above about 6.2 V) and the Zener is that the channel length of the former exceeds the “mean free path” of the electrons, so there are collisions between them on the way out. The only practical difference is that the two types have temperature coefficients of opposite polarities.

Cat’s whisker or crystal diodes

These are a type of point contact diode. The cat’s whisker diode consists of a thin or sharpened metal wire pressed against a semiconducting crystal, typically galena or a piece of coal.[4] The wire forms the anode and the crystal forms the cathode. Cat’s whisker diodes were also called crystal diodes and found application in crystal radio receivers. Cat’s whisker diodes are obsolete.

Constant current diodes

These are actually a JFET with the gate shorted to the source, and function like a two-terminal current-limiting analog to the Zener diode; they allow a current through them to rise to a certain value, and then level off at a specific value. Also called CLDs, constant-current diodes, diode-connected transistors, or current-regulating diodes.[5], [6]

Esaki or tunnel diodes

these have a region of operation showing negative resistance caused by quantum tunneling, thus allowing amplification of signals and very simple bistable circuits. These diodes are also the type most resistant to nuclear radiation.

Gunn diodes

These are similar to tunnel diodes in that they are made of materials such as GaAs or InP that exhibit a region of negative differential resistance. With appropriate biasing, dipole domains form and travel across the diode, allowing high frequency microwave oscillators to be built.

Light-emitting diodes (LEDs)

In a diode formed from a direct band-gap semiconductor, such as gallium arsenide, carriers that cross the junction emit photons when they recombine with the majority carrier on the other side. Depending on the material, wavelengths (or colors) from the infrared to the near ultraviolet may be produced. The forward potential of these diodes depends on the wavelength of the emitted photons: 1.2 V corresponds to red, 2.4 to violet. The first LEDs were red and yellow, and higher-frequency diodes have been developed over time. All LEDs are monochromatic; “white” LEDs are actually combinations of three LEDs of a different color, or a blue LED with a yellow scintillator coating. LEDs can also be used as low-efficiency photodiodes in signal applications. An LED may be paired with a photodiode or phototransistor in the same package, to form an opto-isolator.

Laser diodes

When an LED-like structure is contained in a resonant cavity formed by polishing the parallel end faces, a laser can be formed. Laser diodes are commonly used in optical storage devices and for high speed optical communication.

Peltier diodes

are used as sensors, heat engines for thermoelectric cooling. Charge carriers absorb and emit their band gap energies as heat.

Photodiodes

All semiconductors are subject to optical charge carrier generation. This is typically an undesired effect, so most semiconductors are packaged in light blocking material. Photodiodes are intended to sense light(photodetector), so they are packaged in materials that allow light to pass, and are usually PIN (the kind of diode most sensitive to light). A photodiode can be used in solar cells, in photometry, or in optical communications. Multiple photodiodes may be packaged in a single device, either as a linear array or as a two dimensional array. These arrays should not be confused with charge-coupled devices.

Point-contact diodes

These work the same as the junction semiconductor diodes described above, but their construction is simpler. A block of n-type semiconductor is built, and a conducting sharp-point contact made with some group-3 metal is placed in contact with the semiconductor. Some metal migrates into the semiconductor to make a small region of p-type semiconductor near the contact. The long-popular 1N34 germanium version is still used in radio receivers as a detector and occasionally in specialized analog electronics.

PIN diodes

A PIN diode has a central un-doped, or intrinsic, layer, forming a p-type / intrinsic / n-type structure. They are used as radio frequency switches and attenuators. They are also used as large volume ionizing radiation detectors and as photodetectors. PIN diodes are also used in power electronics, as their central layer can withstand high voltages. Furthermore, the PIN structure can be found in many power semiconductor devices, such as IGBTs, power MOSFETs, and thyristors.

Switching diodes

Switching diodes, sometimes also called small signal diodes, are a single p-n diode in a discrete package. A switching diode provides essentially the same function as a switch. Below the specified applied voltage it has high resistance similar to an open switch, while above that voltage it suddenly changes to the low resistance of a closed switch. They are used in devices such as ring modulation.

Schottky diodes

Schottky diodes are constructed from a metal to semiconductor contact. They have a lower forward voltage drop than any p-n junction diode. Their forward voltage drop at forward currents of about 1 mA is in the range 0.15 V to 0.45 V, which makes them useful in voltage clamping applications and prevention of transistor saturation. They can also be used as low loss rectifiers although their reverse leakage current is generally much higher than non Schottky rectifiers. Schottky diodes are majority carrier devices and so do not suffer from minority carrier storage problems that slow down most normal diodes — so they have a faster “reverse recovery” than any p-n junction diode. They also tend to have much lower junction capacitance than PN diodes and this contributes towards their high switching speed and their suitability in high speed circuits and RF devices such as switched-mode power supply, mixers and detectors.

Super Barrier Diodes

Super barrier diodes are rectifier diodes that incorporate the low forward voltage drop of the Schottky diode with the surge-handling capability and low reverse leakage current of a normal p-n junction diode.

Gold-doped” diodes

As a dopant, gold (or platinum) acts as recombination centers, which help a fast recombination of minority carriers. This allows the diode to operate at signal frequencies, at the expense of a higher forward voltage drop. Gold doped diodes are faster than other p-n diodes (but not as fast as Schottky diodes). They also have less reverse-current leakage than Schottky diodes (but not as good as other p-n diodes).[7].[3] A typical example is the 1N914.

Snap-off or Step recovery diodes

The term ‘step recovery’ relates to the form of the reverse recovery characteristic of these devices. After a forward current has been passing in an SRD and the current is interrupted or reversed, the reverse conduction will cease very abruptly (as in a step waveform). SRDs can therefore provide very fast voltage transitions by the very sudden disappearance of the charge carriers.

Transient voltage suppression diode (TVS)

These are avalanche diodes designed specifically to protect other semiconductor devices from high-voltage transients. Their p-n junctions have a much larger cross-sectional area than those of a normal diode, allowing them to conduct large currents to ground without sustaining damage.

Varicap or varactor diodes

These are used as voltage-controlled capacitors. These are important in PLL (phase-locked loop) and FLL (frequency-locked loop) circuits, allowing tuning circuits, such as those in television receivers, to lock quickly, replacing older designs that took a long time to warm up and lock. A PLL is faster than a FLL, but prone to integer harmonic locking (if one attempts to lock to a broadband signal). They also enabled tunable oscillators in early discrete tuning of radios, where a cheap and stable, but fixed-frequency, crystal oscillator provided the reference frequency for a voltage-controlled oscillator.

Zener diodes

Diodes that can be made to conduct backwards. This effect, called Zener breakdown, occurs at a precisely defined voltage, allowing the diode to be used as a precision voltage reference. In practical voltage reference circuits Zener and switching diodes are connected in series and opposite directions to balance the temperature coefficient to near zero. Some devices labeled as high-voltage Zener diodes are actually avalanche diodes (see below). Two (equivalent) Zeners in series and in reverse order, in the same package, constitute a transient absorber (or Transorb, a registered trademark). They are named for Dr. Clarence Melvin Zener of Southern Illinois University, inventor of the device.


Other uses for semiconductor diodes include sensing temperature, and computing analog logarithms (see Operational amplifier applications#Logarithmic).

[edit] Numbering

A standardized 1N-series numbering system was introduced in the US by EIA/JEDEC (Joint Electron Device Engineering Council) about 1960. Among the most popular in this series were: 1N34A/1N270 (Germanium signal), IN914/1N4148 (Silicon signal) and 1N4001-1N4007 (Silicon 1A power rectifier). [8] [9] [10]

[edit] Related devices

In optics, an equivalent device for the diode but with laser light would be the Optical isolator, also known as an Optical Diode, that allows light to only pass in 1 direction. It uses a Faraday rotator as the main component.

[edit] Applications

Figure 8: Several types of diodes. The scale is centimeters.
Figure 8: Several types of diodes. The scale is centimeters.

[edit] Radio demodulation

The first use for the diode was the demodulation of amplitude modulated (AM) radio broadcasts. The history of this discovery is treated in depth in the radio article. In summary, an AM signal consists of alternating positive and negative peaks of voltage, whose amplitude or “envelope” is proportional to the original audio signal, but whose average value is zero. The diode (originally a crystal diode) rectifies the AM signal, leaving a signal whose average amplitude is the desired audio signal. The average value is extracted using a simple filter and fed into an audio transducer, which generates sound.

[edit] Power conversion

Rectifiers are constructed from diodes, where they are used to convert alternating current (AC) electricity into direct current (DC). Automotive alternators are a common example, where the diode provides better performance than the commutator of earlier dynamo. Similarly, diodes are also used in Cockcroft–Walton voltage multipliers to convert AC into higher DC voltages.

[edit] Over-voltage protection

Diodes are frequently used to conduct damaging high voltages away from sensitive electronic devices. They are usually reverse-biased (non-conducting) under normal circumstances. When the voltage rises above the normal range, the diodes become forward-biased (conducting). For example, diodes are used in ( stepper motor and H-bridge ) motor controller and relay circuits to de-energize coils rapidly without the damaging voltage spikes that would otherwise occur. (Any diode used in such an application is called a flyback diode). Many integrated circuits also incorporate diodes on the connection pins to prevent external voltages from damaging their sensitive transistors. Specialized diodes are used to protect from over-voltages at higher power (see Diode types above).

[edit] Logic gates

Diodes can be combined with other components to construct AND and OR logic gates. This is referred to as diode logic.

[edit] Ionising radiation detectors

In addition to light, mentioned above, semiconductor diodes are sensitive to more energetic radiation. In electronics, cosmic rays and other sources of ionising radiation cause noise pulses and single and multiple bit errors. This effect is sometimes exploited by particle detectors to detect radiation. A single particle of radiation, with thousands or millions of electron volts of energy, generates many charge carrier pairs, as its energy is deposited in the semiconductor material. If the depletion layer is large enough to catch the whole shower or to stop a heavy particle, a fairly accurate measurement of the particle’s energy can be made, simply by measuring the charge conducted and without the complexity of a magnetic spectrometer or etc. These semiconductor radiation detectors need efficient and uniform charge collection and low leakage current. They are often cooled by liquid nitrogen. For longer range (about a centimetre) particles they need a very large depletion depth and large area. For short range particles, they need any contact or un-depleted semiconductor on at least one surface to be very thin. The back-bias voltages are near breakdown (around a thousand volts per centimetre). Germanium and silicon are common materials. Some of these detectors sense position as well as energy. They have a finite life, especially when detecting heavy particles, because of radiation damage. Silicon and germanium are quite different in their ability to convert gamma rays to electron showers.

Semiconductor detectors for high energy particles are used in large numbers. Because of energy loss fluctuations, accurate measurement of the energy deposited is of less use.

[edit] Temperature measuring

A diode can be used as a temperature measuring device, since the forward voltage drop across the diode depends on temperature, as in a Silicon bandgap temperature sensor. From the Shockley ideal diode equation given above, it appears the voltage has a positive temperature coefficient (at a constant current)but depends on doping concentration and operating temperature (Sze 2007). The temperature coefficient can be negative as in typical thermistors or positive for temperature sense diodes down to about 20 kelvins.

[edit] Current steering

Diodes will prevent currents from flowing in unintended directions. To supply power to an electrical circuit during a power failure, the circuit can draw current from a battery. An Uninterruptible power supply may use diodes in this way to ensure that current is only drawn from the battery when necessary. Similarly, small boats typically have two circuits each with their own battery/batteries: one used for engine starting; one used for domestics. Normally both are charged from a single alternator, and a heavy duty split charge diode is used to prevent the higher charge battery (typically the engine battery) from discharging through the lower charged battery when the alternator is not running [[11]].

[edit] Abbreviations

Diodes are usually referred to as D for diode on PCBs. Sometimes the abbreviation CR for crystal rectifier is seen.[4]

[edit] See also

[edit] Notes

  1. ^ 1928 Nobel Prize article on the diode
  2. ^ Historical lecture on Karl Braun
  3. ^ S. M. Sze, Modern Semiconductor Device Physics, Wiley Interscience, ISBN 0-471-15237-4
  4. ^ John Ambrose Fleming. (1919). The Principles of Electric Wave Telegraphy and Telephony. London: Longmans, Green. 550.

[edit] External links